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A THERMO-KINETIC VIEW OF ELASTIC STABILITY THEORY
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Abstract-It seems to be common to regard thermodynamic stability and mechanical stability as two distinct
subjects. We here explore the possibility of combining the two in a conceptually clear manner, in a rather
limited context. Primarily, we work within the contexts of nonlinear elasticity and thermoelasticity theories,
exploring relations between energy criteria for stability and consequences of a kinetic definition of stability.

1. PRELIMINARIES

As A BASIS for our study, we first summarize common attributes of the more conventional
continuum theories, including those mentioned above. In Cartesian tensor notation,
there are the laws of conservation or balance of mass, linear momentum and momentum,
which can be written as

fP dV I:: = 0,

fPXi d V I:: = r: dt (fT;~ dS~ + f p/; d V) ,

f pX[ixJ1 d Vi:: = f dt (fX[i 1j)~ dS~ + f pX[iJj)dV) ,

t1 and t2 ?:: t1 being any two times, The integrands are considered as functions of time t
and material coordinates X~, interpretable as coordinates of particles in a convenient
reference configuration. For a given body, the reference configuration is a region R,
independent of time, the region of integration in (lH3). On its boundary 8R, dS~ denotes
the outward directed vector element of area. Further, P is the mass per unit reference
volume, Xi the present coordinates of a particle, Xi its velocity, and /; the body force per
unit mass. The tensor T;~ is the Piola-Kirchhoff stress, sometimes called engineering stress.
Finally, in (3), square brackets denote "the antisymmetric part of". These integral forms
apply to most physically acceptable solutions, including what are commonly called stress
waves and shock waves.

Particularly in the theories covering thermal effects and to some extent in the rest,
we use the energy equation

fp(c+tXiXi)dVI:: = £:: dt[f(T;~Xi-Q~)dS~+ f p/;xidV], (4)

where c is internal energy per unit mass, Q~ the heat flux vector, reckoned per unit area
in the referenceiconfiguration. We exclude the volume sources of heat sometimes included.
Also, there is the Clausius-Duhem inequality

Ipl7 d vi t2 +It2

dtl ~~ dS~ ~ 0, (5)
tl tl J
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rJ being entropy per unit mass, T absolute temperature. Thermoelasticity theories here
considered are designed so that this inequality always holds for reasonably smooth
solutions, though shock waves might sometimes be exceptional.

To be definite, we concentrate on problems roughly corresponding to what is generally
called stability under dead loading in elastic stability theory. Various other cases follow
a similar pattern.* Consider a theory for which (lH5) apply rigorously. Consider a time
independent solution, hereafter called the rest solution, defined in a region R, with

T = f = const. > 0, /; = ]; in R,

Tia dS~ = f, dS on oR.
(6)

(7)

Henceforth, "hats" always denote quantities associated with it. Consider any other
solution ~, called a disturbance, defined in R for times in some interval t3 :s; t :s; t 1 .

For t > t b we adjust the forces and surface temperature as follows:

T = 1; T ia dS~ = f, dS on oR, t > t 1 (8)

/;=];inR, t>t1. (9)

Assume there is at least one solution f/', called a transient, with f/' = ~ for t3 :s; t:s; t 1,

satisfying (8) and (9) for t > t 1 . For f/', we have from (4), (5), (8) and (9)

Jp(S- frJ+tx,Xi)dV[ - Jdt(ft;xidS + Jp];Xi dV)

= - fUPrJ dV [+ r~dtf~ dS~):S; 0. (10)

Now assume that, as t --+ 00, f/' converges to the rest solution. Bearing in mind that
quantities bearing hats are independent of time, we obtain

X == fpcpdVl
oo

- fp[(T-f)rJ+tuiui]dV!_ + ff,uidS + fp];uidV:S; 0, (11)
tl t-tl

where

cp = s - TrJ

is the Helmholtz free energy per unit mass and

Ui(X~, t) = Xi(X~, t)-~i(X~)

(12)

(13)

represents the displacement from the rest position. Here and in the following, we operate
formally, assuming for example that

lim fpXiXi dV = f lim PUiUi dV = 0.
t-oo t-oo

(14)

In various ways, one can make precise the statement that "f/' converges" so as to validate
these operations. There are subtle points concerning the most appropriate definition
which we choose not to investigate.

* A comprehensive survey of the general theory of elastic stability is given by Truesdell and Noll [I, §68].
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It is of course conceivable that a given disturbance would admit no transient. If it
does, and if every such continuation converges to the rest solution, we say that the rest
solution is kinetically stable with respect to the disturbance g;. Equation (11) provides a
necessary condition for this. It, or variations of it provide a basis for energy criteria used
in elastic stability theory, and extensions of such criteria to more complex theories.

Strictly speaking, we never have kinetic stability with respect to all disturbances.
From (2), (8) and (9) we can infer that, for a transient to converge to the rest solution,

fpXidVI = fpxidVI = fPXidVI = 0,
r=t. t>t. t-oo

from which

fpuidVI = O.
r=t.

(15)

That is, at time t 10 the center of mass must be in its rest position. Intuitively, for a given
material, it seems unlikely that a given rest solution Will be stable with respect to all
other disturbances; a sufficiently strong blow may well "destabilize" it. Practically,
needs to be satisfied by a stability theory do vary, it being one thing to design a structure
to withstand gentle breezes, quite another when it must survive hurricanes. Commonly,
we select some set of disturbances, often a restricted set of infinitesimal disturbances,
then seek to determine whether we have stability with respect to these. An alternative
which might be more fruitful would involve seeking to characterize the set of disturbances
with respect to which we do or do not have stability, leaving it to the designer to decide
whether the destabilizing disturbances are likely to be encountered. We later comment
on an approach to this problem which may be feasible in some cases.

Thus far, we have said rather little about the theories to be used. These could incor
porate viscoelastic and thermal effects, at least as long as these fall within the framework
discussed by Coleman [2]. For more detailed exploration, we turn to more special theories
involving some simplifying features.

2. THERMOELASTIC STABILITY

We now turn to nonlinear thermoelasticity theory.* For simplicity, we neglect body
forces. It would in fact be simpler, but unrealistic to assume they can be varied at will.
We then have constitutive equations of the form

cP = CP(Xi,,,, T, Xp) = e- Tr" (16)

1] = - 9CP/8T, (17)

1;" = p8cp/8xi,,,, (18)

{?at = Q,,(Xk,P' T, T,y, X 6), (19)

~~SQ ~

The inequality (20), a consequence of (5), implies thatt

{?at = 0 when T.p = O. (21)

• For a modem development of this, cf. Coleman and Noll [3).
t Cf. Truesdell and Noll [I, §96).
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The governing differential equations are

T;~,~ = pXb (22)

pTr, = - Q~,~. (23)

In (16) and (19), Xi,~ can be replaced by any of the finite material strain measures, cp and
Q~ being insensitive to rigid rotations.

In particular, for static deformations with T = T = const., such a theory reduces to
a nonlinear elasticity theory for which W, the strain energy per unit reference volume, is
given by

W = W(Xi,~, X p) = PCP(Xi,~, f, X p). (24)

In the present context, disturbances and transients will be thermoelastic, but not neces
sarily elastic solutions. Rest solutions will of course be elastostatic in the obvious sense.

As a general rule, these thermoelastic equations admit solutions to an initial value
problem wherein we prescribe Xi' Xi and T as analytic functions of X~ at a given time
tt. To construct such a solution, we use the governing equations to calculate time deriva
tives of all orders of displacement and temperature, thereby obtaining a formal power
series in the time for these functions of their arguments at values corresponding to the
given data. Further, examination shows that we should have

T 8IJ/8T # 0 (25)

for the data given. We can then use the Cauchy-Kowalewski existence theorem to
establish the fact that the formal power series converges to a solution, analytic in the
time, for t sufficiently close to tt. This makes it plausible to assume, as we shall, that there
are disturbances which produce essentially arbitrary sm,ooth values of X;, Xi and T at a
given instant. Clearly, we should avoid singularities in the constitutive equations and
places where (25) fails. On physical grounds, the left side of (25) might be expected to be
positive, being proportional to the specific heat at constant deformation. However, one
should be alert to the possibility that exceptions to (25) may well occur for special choices
of cP such as obtained from polynomial approximations and these may well imply some
type of instability, perhaps merely indicating that the range of applicability of the theory
is exceeded. Reverting to our assumption, we can calculate initial surface tractions and
surface temperature. In principle, the analytic solution supplies such data as long as it
exists. Ordinarily this will disagree with that which we desire, given by (8). It may still be
possible to continue the disturbance in time, in a non-analytic fashion, so as to satisfy (8).
If the initial data disagrees with (8), any transient necessarily involves a rather strong
singularity, perhaps involving shock waves, generated by the abrupt change in boundary
conditions. As a matter of choice we can include or exclude such disturbances. If we
exclude them, we must restrict initial data so that they satisfy

Tin. dS~ = 1; dS, T = Ton 8R, (26)

We do not expect that these restrictions will rule out strong singularities. Pragmatically,
we do not know how to accomplish this.* It is rather clear that there are physically
interesting instability phenomena correlating with this, scabbing and other fracture

* For various linearized theories, Shield [4) presents conditions on initial data which guarantee that solutions
have definite continuity properties, granted that they exist.
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phenomena being reasonably well understood in terms elementary linear elastic wave
analyses. Said differently, possible breakdowns in existence of relatively smooth solutions
are likely to be significant.* It does not seem feasible to here explore these existence
theoretic questions further, so we take a different tack.

Clearly, a transient interrupted at any particular time, will serve as a disturbance.
For stability with respect to the original disturbance, we must also have stability with
respect to this disturbance, so (11) must apply to it. It seems worthwhile to explore to
what extent (11) might be sufficient for stability. To this end, consider

X(t) = fp[cP-cp-(T- 1')1]+iuiui] dV + f f;u; dS (27)

as a functional of time dependent vector fields, Ui and scalars T - f: For this, we assume
that the constitutive equations apply and that a fixed rest solution is given, but it is not
essential that (22) and (23) be satisfied. The guiding principle is that Ui and T - l' should
be in a function space which includes disturbances and transients which we wish to
consider. We can limit them by imposing cond;tions such as are suggested by (15) and
(26), for example. Suppose that

X(t) ::; 0 (28)

for the functions considered admissible. The value of X then serves as a rough measure
of the departure from the rest solution, being more reliable if, in (28), the equality holds
only when there is no departure. For linearized theories, it can be reduced to a quadratic
integral which, when strictly positive, provides a natural Hilbert space norm.

When we evaluate X for a thermoelastIc solution satisfying (26), we have

x= - J[Tiaui ,,, - P1] T+P T1] + peT - 1')1]+ Ui Tia ,,,] d V + fTiaUi dS"

= - f ['IiA,,, + peT - 1')1] + uiTia ,,, - ('T;"u;),,,] dV

= f(1- 1'jT)Q",,, d V

= f(1- 1'jT)Q" dS" - J(1 - TjT),,,Q,. d V

= - Tf(Q"I:,.)jT2dV~ 0

(29)

so X increases monotonically with time, generally being strictly increasing as long as T
differs from its equilibrium value. As long as (28) applies, and to the extent that X is a
satisfactory measure of departure from equilibrium, we thus tend to get closer to equilib
rium. There is no guarantee that the rest solution is attained. The solution could fail to
exist after a finite time, possibly go into steady state isothermal oscillation about the
rest solution. If we have selected the function space unwisely, we may leave it and find
that (28) no longer applies, etc. In any event (28) has some pertinence with respect to the
stability problem. In particular, if the strict form of (28) holds, we easily see that if the
material is initially in the rest configuration and we maintain the boundary conditions
at rest values, the material must stay at rest. In linearized theories, this amounts to the

* It seems pertinent to note that the explanation of internal fracture of rubber proposed by Gent and
Lindley [5] exploits the fact that a certain elastostatic problem has no solution if the load be too large.
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statement that there is at most one solution of the initial-boundary value problem of the
type here discussed.

We further explore (11), seeking to correlate it with an energy criterion for elastic
stability. To this end, we introduce a finite Taylor expansion in the temperature writing

p[cp+(T-T)1J] = p[cp-(T-T)ocpjoT]

= W+!Kp(T-T)2, (30)

where W is given by (29) and

K = 2p(T- Tr 2[cp-(T- T)ocpjoT- Wjp]

[
02cp 03cpJ*

= - oT2+(T - T) oT3 (31)

the star denoting that this quantity is to be evaluated for some temperature between
T and f. Thus (27H28) become

X = fpv- W)dV + ~f;uj dS-t Jp[K(T- T)2+ UjUj] dV:S:; O. (32)

The first two terms are independent of T and Uj. Thus if this holds for a sufficiently broad
set of fields to permit us to vary these independently of Uj, or if we may merely set T = 1',
uj = 0 as a possibility, we must have

J(W- W) dV + ~f;Ui dS:S:; 0 (33)

for all admissible displacements. Similarly, another condition is obtained by setting
U j = Uj = 0 and granting that T - Tcan be varied arbitrarily, viz.

K!Ui;O(T-T)2 = p[cp-(T-T)ocpjoT-W].'i;O 2 O. (34)

From (31), this clearly implies that

- To 2cjJjoT2 = To~jaT 2 O. (35)

That is, for the rest solution, the specific heat at constant deformation must be non
negative. For sufficiently small disturbances, (33) and (34) imply (32).

From what was said earlier concerning arbitrariness of data for the initial value prob
lem, it is not entirely unreasonable to require (33) to hold for essentially arbitrary smooth
displacement fields. Then (33) becomes the criterion for elastic stability under dead load
ing proposed by Pearson [6]. For reasons discussed by Beatty [7], this criterion is in
appropriate for analyzing simple buckling problems; it is easily shown that, in cases of
comprehensive loading, (32) necessarily fails when U j describes a suitably selected rigid
rotation, no matter how small the load. Experimentally, we must take pains to exclude
this "misalignment" type of disturbance if we hope to measure a buckling load for a
beam which is at all close to the Euler load. This provides a homely example of a case
where we have stability with respect to some types of disturbance, not with respect to
others. Beatty [7] proposes that, in such cases (33) be required to hold only for Uj which
give rise to zero resultant moment,

(36)
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A comparable assumption in 'beam theory is that the ends of the beam are pinned. The
work of Holden [8] indicates how one can use this to obtain safe estimates of critical
loads in terms of Korn's constant, which depends only on the shape of the region. From
this and Pearson's analysis, which is likely to give an unsafe estimate, it seems likely
that, for beams of sufficiently large length to width ratio, the three-dimensional theory
probably gives a load somewhat smaller but of the same order of magnitude as the Euler
load. An alternative constraint, suggested in (26), is that we require that the surface
tractions corresponding to Ui match those for the rest solution. This possibility is briefly
discussed by Truesdell and Noll [1, § 68], but no predictions have been obtained from it.
A third alternative obtains as follows: pick one of the necessary conditions for stability,
as here defined. To be definite, pick (33). Use the left-hand side to divide all displacement
fields into two sets, according as the value of this functional is positive or not. From
what has been said, those which make it positive clearly represent' disturbances with
respect to which we do not have stability. For the remaining set we may have stability.
It would of course be preferable to isolate those for which we definitely do have stability,
but we lack useable criteria for this. In any event, this provides a basis for distinguishing
at least some of the destabilizing disturbances. For estimating how the amplitude of a
disturbance influences stability, we might proceed naively, writing

Ui = Wi (37)

Vi being a fixed vector field, I: a parameter. Then the left side of (33) reduces to a function
of 1:. If it is negative for small 1:, we can define a critical amplitude in the obvious manner.
Since a small disturbance may produce a large transient, etc. such an estimate is trust
worthy only from the point of view of establishing some destabilizing disturbances.
However, I do not know of a completely satisfactory way of treating such problems.

There is some formal similarity between the inequality (11) and some proposed by
Coleman and Noll [8], say their (15.6). Theirs have been considered more as restrictions
on admissible constitutive equations, while we certainly envisage the possibility that ours
are sometimes violated. I see no compelling physical reason to think that any such
inequality holds universally. It is natural to expect that any such restriction will tend
to exclude some instabilities which might otherwise be predicted. Various restrictions
which have been considered are discussed by Truesdell and Noll [1, § 52].
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Resume-II semble habituel de considerer la stabilite thermodynamique et la stabilite mecanique comme deux
sujets distincts. Nous explorons ici la possibilite de combiner ces deux sujets d'une maniere absolument eclairee,
dans un contexte limite. Principalement, nous travaillons avec les contextes de I'elasticite non-lineaire et les
theories de thermoelasticite, explorant les relations entre les criteres d'energie de la stabilite et les consequences
d'une definition cinetique de stabilite.

Zusammenfassung-Es scheint allgemein Ublich zu sein, Thermodynamische StabiliHit und Mechanische
Stabilitat als zwei ausdrUcklich verschiedene Subjekte zu betrachten. Wir untersuchen hier die Moglichkeit.
die beiden in einem klaren Begriff eines ziemlich beschrankten Zusammenhanges zu verbinden. Vorwiegend, wir
arbeiten innerhalb des Begriffes von nichtlinearer Elastizitat und thermoelatischen Theorien in der Untersuchung
von Beziehungen zwischen Energie Kriterium fUr Stabilitat und Folgen einer kinetischen Erkllirung del
Stabilitat.

A6CTpaKT--KaJKeTCll 06hl'lHhIM paCCMaTpHBaTh TepMOAHHaMH'IecKylO YCTOH'IHBCCTh H MexaHH'IecKylO
YCTOHy'lHBOCTh, KaK ABe pa1J1H'IHhIX TeMhI. 3.l\eCh MhI HccJleAyeM B01MOJKHOCTh coeAHHeHHlI Toro H
Apyroro CXeMaTH'IeCKH lICHhIM cnoco60M B AOBOJlhHO OrpaHH'IeHHOH CB1I1H. MhI pa60TaeM, rJlaBHhIM
o6pa10M B npeAeJlax TeopHH HeJlHHeHHOH eJlaCTH'IHOCTH H TepMOeJlaCTH'IHOCTH, HCCJleAYll OTHOllleHHlI
MeJKAY KpHTepl1eM eHeprHI1 AJllI YCTOH'IHBOCTI1 HCJleACTBl1l1MI1 KI1HeTH'IeCKOrO onpeAeJleHHlI yCTOH'IHBOCTH.


